Comment les nouvelles technologies peuvent-elles faciliter le dépistage de l’autisme ?

Auteurs

  • Nada Kojovic Université de Genève
  • Marie Schaer Université de Genève

DOI :

https://doi.org/10.57161/r2023-01-02

Mots-clés :

diagnostic, trouble du spectre de l’autisme, Intelligence artificielle, dépistage

Résumé

De plus en plus d’études scientifiques démontrent qu’il est possible de quantifier de manière précise et automatisée les
manifestations de l’autisme grâce aux nouvelles technologies. Nous présentons ici une revue de cette littérature, ainsi que des
résultats de notre groupe de recherche qui montrent que l’analyse automatisée de vidéos pourrait représenter un excellent
moyen de dépister l’autisme précocement. Ainsi, notre algorithme basé sur l’intelligence artificielle a pu dans 81 % des cas
correctement distinguer les vidéos des enfants présentant un TSA des enfants ayant un développement typique sur la base de
caractéristiques uniquement non verbales de l’interaction sociale réciproque.

Références

American Psychiatric Association [APA]. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5). APA. DOI: https://doi.org/10.1176/appi.books.9780890425596

Campbell, K., Carpenter, K. L., Hashemi, J., Espinosa, S., Marsan, S., Borg, J. S., Chang, Z., Qiu, Q., Vermeer, S., Adler, E., Tepper, M., Egger, H. L., Baker, J. P., Sapiro, G., & Dawson, G. (2018). Computer vision analysis captures atypical attention in toddlers with autism. Autism, 23 (3), 619-628. https://doi.org/10.1177/1362361318766247 DOI: https://doi.org/10.1177/1362361318766247

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172–183. https://doi.org/10.1109/TPAMI.2019.2929257 DOI: https://doi.org/10.1109/TPAMI.2019.2929257

Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20(3), 775 –803. https://doi.org/10.1017/S0954579408000370 DOI: https://doi.org/10.1017/S0954579408000370

De Belen, R. A. J., Bednarz, T., Sowmya, A., & Del Favero, D. (2020). Computer vision in autism spectrum disorder research: A systematic review of published studies from 2009 to 2019. Translational Psychiatry, 10 (1), Article 1. https://doi.org/10.1038/s41398-020-01015-w DOI: https://doi.org/10.1038/s41398-020-01015-w

Godel, M., Robain, F., Kojovic, N., Franchini, M., Wood de Wilde, H., & Schaer, M. (2022). Distinct Patterns of Cognitive Outcome in Young Children With Autism Spectrum Disorder Receiving the Early Start Denver Model. Frontiers in Psychiatry, 13, 835580. https://doi.org/10.3389/fpsyt.2022.835580 DOI: https://doi.org/10.3389/fpsyt.2022.835580

Guha, T., Yang, Z., Grossman, R. B., & Narayanan, S. S. (2018). A Computational Study of Expressive Facial Dynamics in Children with Autism. IEEE Transactions on Affective Computing, 9(1), 14 –20. https://doi.org/10.1109/TAFFC.2016.2578316 DOI: https://doi.org/10.1109/TAFFC.2016.2578316

Hashemi, J., Tepper, M., Vallin Spina, T., Esler, A., Morellas, V., Papanikolopoulos, N., Egger, H., Dawson, G., & Sapiro, G. (2014). Computer Vision Tools for Low-Cost and Noninvasive Measurement of Autism-Related Behaviors in Infants. Autism Research and Treatment, 2014, Article 935686. https://doi.org/10.1155/2014/935686 DOI: https://doi.org/10.1155/2014/935686

Klintwall, L., Eldevik, S., & Eikeseth, S. (2015). Narrowing the gap: Effects of intervention on developmental trajectories in autism. Autism,19(1), 53–63. https://doi.org/10.1177/1362361313510067 DOI: https://doi.org/10.1177/1362361313510067

Kojovic, N., Natraj, S., Mohanty, S. P., Maillart, T., & Schaer, M. (2021). Using 2D video-based pose estimation for automated prediction of autism spectrum disorders in young children. Scientific Reports, 11 (1), Article 15069. https://doi.org/10.1038/s41598-021-94378-z DOI: https://doi.org/10.1038/s41598-021-94378-z

Lombardo, M. V., Busuoli, E. M., Schreibman, L., Stahmer, A. C., Pramparo, T., Landi, I., Mandelli, V., Bertelsen, N., Barnes, C. C., Gazestani, V., Lopez, L., Bacon, E. C., Courchesne, E., & Pierce, K. (2021). Pre-treatment clinical and gene expression patterns predict developmental change in early intervention in autism. Molecular Psychiatry, 26, 7641–7651. https://doi.org/10.1038/s41380-021-01239-2 DOI: https://doi.org/10.1038/s41380-021-01239-2

Lord, C., DiLavore, P. C., Gotham, K., Guthrie, W., Luyster, R. J., Risi, S., Rutter, M., & Western Psychological Services (Firm). (2012). Autism diagnostic observation schedule : ADOS-2. Western Psychological Services.

Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. https://doi.org/10.1023/A:1005592401947 DOI: https://doi.org/10.1023/A:1005592401947

Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (1989). Autism diagnostic observation schedule : A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185–212. https://link.springer.com/article/10.1007/BF02211841 DOI: https://doi.org/10.1007/BF02211841

Maenner, M. J. (2020). Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years –Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR. Surveillance Summaries, 69 (4), 1-12. https://doi.org/10.15585/mmwr.ss6904a1 DOI: https://doi.org/10.15585/mmwr.ss6903a1

Robain, F., Franchini, M., Kojovic, N., Wood de Wilde, H., & Schaer, M. (2020). Predictors of Treatment Outcome in Preschoolers with Autism Spectrum Disorder: An Observational Study in the Greater Geneva Area, Switzerland. Journal of Autism and Developmental Disorders, 50(11), 3815 –3830. https://doi.org/10.1007/s10803-020-04430-6 DOI: https://doi.org/10.1007/s10803-020-04430-6

Yuen, T., Penner, M., Carter, M. T., Szatmari, P., & Ungar, W. J. (2018). Assessing the accuracy of the Modified Checklist for Autism in Toddlers: A systematic review and meta-analysis. Developmental Medicine & Child Neurology, 60(11), 1093-1100. https://doi.org/10.1111/dmcn.13964 DOI: https://doi.org/10.1111/dmcn.13964

Téléchargements

Publiée

2023-02-24

Comment citer

Kojovic, N., & Schaer, M. (2023). Comment les nouvelles technologies peuvent-elles faciliter le dépistage de l’autisme ?. Revue Suisse De pédagogie spécialisée, 13(01), 9–14. https://doi.org/10.57161/r2023-01-02